

TSSV: Targeted characterisation of short structural variation

[image: _images/tssv.svg]
 [https://github.com/jfjlaros/tssv/graphs/commit-activity][image: _images/badge.svg]
 [https://github.com/jfjlaros/tssv/actions/workflows/python-package.yml][image: _images/0207ffcd512442302bb786ed757b02a4bc21411c.svg]
 [https://tssv.readthedocs.io/en/latest][image: _images/tssv1.svg]
 [https://github.com/jfjlaros/tssv/releases][image: _images/tssv2.svg]
 [https://github.com/jfjlaros/tssv/releases][image: _images/tssv3.svg]
 [https://pypi.org/project/tssv/][image: _images/tssv4.svg]
 [https://github.com/jfjlaros/tssv][image: _images/tssv5.svg]
 [https://github.com/jfjlaros/tssv][image: _images/tssv6.svg]
 [https://github.com/jfjlaros/tssv][image: _images/tssv7.svg]
 [https://raw.githubusercontent.com/jfjlaros/tssv/master/LICENSE.md]

TSSV is a program that does targeted characterisation of short structural
variation. It can be used for STR analysis, or any other type of targeted
analysis. It characterises any variation between a set of user-defined markers.

TSSV is platform-independent. It has been tested on Linux, macOS, and Windows.

Please see ReadTheDocs [https://tssv.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Introduction

	Installation
	From source

	Usage
	Paired-end read support

	References

	Benchmarking test for the C library
	Speedup estimation

	Plotting

	Results

	Contributors

Introduction

Installation

TSSV depends on gcc for the compilation of one of the core libraries. Also
a package that provides Python.h should be installed. For Debian based
systems, the following command will install these packages:

apt-get install libpython3-dev gcc

On Windows and macOS, you will be prompted to install a C compiler while
installing TSSV if you do not have one.

The software is distributed via PyPI [https://pypi.org/project/tssv], it can be installed with pip:

pip install tssv

If there are multiple versions of Python installed, it might be better to use
the command pip3 instead of pip.

From source

The source is hosted on GitHub [https://github.com/jfjlaros/tssv.git], to install the latest development version, use
the following commands.

git clone https://github.com/jfjlaros/tssv.git
cd tssv
pip install .

Usage

The tssv program does targeted characterisation of short structural
variation. See the help (-h) of this program for a full description of the
parameters.

Paired-end read support

With paired-end data in which the insert size was less than twice the read
length, the two reads of each pair may overlap partially or entirely. In this
setting, it is possible to use a read merging tool to combine the two reads of
each pair, possibly giving rise to a longer combined read. The combined read
may contain a known allele that does not fit completely in a single read.

Because repetitive sequences like STRs may perfectly align in many ways, such
tools will be unable to detect whether the combined read actually contains all
repeats that were originally present in the DNA molecule. If the molecule was
too long, the two reads may not overlap at all; however, with a highly
repetitive sequence, they may still appear to overlap significantly. It is only
certain that all repeats have been captured if all of them fitted on a single
read - but the flanking sequences may not be present in their entirety for such
long alleles. Merging the two reads together may still yield the complete
flanking sequence, allowing the allele to be detected by TSSV.

To make sure that any potentially truncated sequences are rejected, the
combined reads can be provided to TSSV with upper case letters for the
overlapped part (i.e., the middle, where both reads in the pair overlap) and
lower case letters for the non-overlapping parts (i.e., those parts only
present in one of the two reads). If TSSV aligns a flanking sequence to a
completely lower case part of the combined read, this means that the flanking
sequence was only present in one of the two reads and had fallen off the end of
the other. In this case, it is impossible to tell whether the sequence between
the flanking sequences contains all repeats that were originally present in the
DNA molecule and therefore it is not meaningful to perform a regular expression
match against it.

One particular paired-end read merging tool that supports this kind of output
is a fork of FLASH 1.2.11 that was specifically made for this purpose, which is
hosted on GitHub [https://github.com/Jerrythafast/FLASH-lowercase-overhang]. This fork introduces an optional command-line argument
--lowercase-overhang that, when specified, enables output compatible with
the paired-end read support of TSSV.

Cheat sheet: Interpretation of letter case in TSSV input and output

Letter case in the library file:

	All sequences in the library file should be in upper case completely.
Regular expressions containing lower case letters will never match. Lower
case letters in flanking sequences will always count as a mismatch in
alignments.

Interpretation of letter case in input sequences:

	Completely upper case reads are processed normally.

	TSSV will be unable to detect any flanking sequences in lower case
sequences.

	In mixed case sequences, the regions to which the flanking sequences are
aligned should contain at least one upper case letter. When a flanking
sequence aligns to a completely lower case region, the match is rejected.
When a pair of flanking sequences is found in the read (and neither match is
rejected), the corresponding regular expression is matched case
insensitively to the sequence between the flanks.

Letter case in output files:

	Sequences in output FASTA files have the same case as the corresponding
input sequences.

	Sequences in output CSV files will be completely in upper case.

Implementation notes

TSSV will do all alignments and pattern matching against an explicitly upper
case copy of each read. The library should therefore contain only upper case
sequences. When a flanking sequence (as provided in the library file) has been
detected in a read, TSSV will check whether the section of the read that
corresponds to this flanking sequence contains any upper case letters. If this
section of the read was completely lower case, the match is rejected.

References

Seyed Yahya Anvar, Kristiaan J. van der Gaag, Jaap W. F. van der Heijden,
Marcel H. A. M. Veltrop, Rolf H. A. M. Vossen, Rick H. de Leeuw, Cor Breukel,
Henk P. J. Buermans, J. Sjef Verbeek, Peter de Knijff, Johan T. den Dunnen, and
Jeroen F. J. Laros, TSSV: a tool for characterization of complex allelic
variants in pure and mixed genomes. Bioinformatics, first published online
February 13, 2014. doi:10.1093/bioinformatics/btu068

	Abstract [http://bioinformatics.oxfordjournals.org/content/early/2014/02/24/bioinformatics.btu068.abstract].

	Full text [http://bioinformatics.oxfordjournals.org/content/early/2014/02/24/bioinformatics.btu068.full.pdf+html].

Benchmarking test for the C library

First we make datasets, these are multiples of the test.fa file in the
data directory. The original file contains 9 records, so the largest
generated dataset will contain 9000 records.

..code:: sh

	for j in 1 2 3 4 5 10 20 30 40 100 200 300 400 1000; do

	i=0
while [$i -le $j]; do

cat data/test.fa >> /tmp/test_$j.fa
i=$((i + 1))

done

done

The tests are done with this snippet. We print the relative size of the dataset
and the amount of (user) seconds it takes for the program to run.

..code:: sh

	for i in 1 2 3 4 5 10 20 30 40 100 200 300 400 1000; do

	echo -n “$i ”
/usr/bin/time -f “%U” tssv /tmp/test_$i.fa data/library.csv -r /dev/null

done

Save the files in old.dat and new.dat respectively.

Speedup estimation

To estimate the speedup, we calculate the ratio of the raw run times for both
tests. This results in a file containing the relative size of the dataset and
the ratio of run times per test.

..code:: sh

IFS=”
”
for i in paste -d ‘ ‘ old.dat new.dat; do

echo -n “$(echo $i | cut -f 1 -d ‘ ‘) ”
echo 3k $(echo $i | cut -f 2 -d ‘ ‘) $(echo $i | cut -f 4 -d ‘ ‘) / p | dc

done > speed.dat

Plotting

We use gnuplot for visualisation:

The raw run times:

set terminal postscript color
set output "benchmark.eps"
set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 7 ps 2
set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 2
set xlabel "dataset size"
set ylabel "run time"
plot "old.dat" with linespoints ls 1, "new.dat" with linespoints ls 2

And the speedup.

set terminal postscript color
set output "speed.eps"
set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 7 ps 2
set xlabel "dataset size"
set ylabel "speedup"
plot "speed.dat" with linespoints ls 1

Results

Raw run times

[image:]

Both programs behave linearly in the size of the dataset (as expected). For an
input of 9000 records, the old method took 3 minutes and 34 seconds, the new
method takes 7 seconds.

The average run time per record is 0.023741 seconds for the old method and
0.000782 seconds for the new method. The speedup is around 30.35 times.

Speedup

[image:]

We see that because of the overhead (loading libraries, reading files, etc.)
the speedup is not constant in the size of the dataset. There seems to be an
asymptote at around 31 or 32, which we think will be the average speedup for
the new implementation.

Contributors

	Jaap W.F. van der Heijden <jwfvanderheijden@gmail.com> (Original author)

	Jerry Hoogenboom <j.hoogenboom@nfi.minvenj.nl> (TSSV lite, SSE2 alignment)

	Jeroen F.J. Laros <J.F.J.Laros@lumc.nl> (Original author, maintainer)

	Redmar van den Berg <Redmar@ubuntu.com> (Support for compressed input)

Find out who contributed:

git shortlog -s -e

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone.

Our Standards

Examples of behaviour that contributes to creating a positive environment
include:

	Using welcoming and inclusive language.

	Being respectful of differing viewpoints and experiences.

	Gracefully accepting constructive criticism.

	Focusing on what is best for the community.

	Showing empathy towards other community members.

Examples of unacceptable behaviour by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances.

	Trolling, insulting/derogatory comments, and personal or political attacks.

	Public or private harassment.

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission.

	Other conduct which could reasonably be considered inappropriate in a
professional setting.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behaviour and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviour that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be
reported by contacting the project team at mailto:j.f.j.laros@lumc.nl. The
project team will review and investigate all complaints, and will respond in a
way that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Please follow these guidelines if you would like to contribute to the project.

Table of Contents

Please read through these guidelines before you get started:

	Questions & Concerns

	Issues & Bugs

	Feature Requests

	Submitting Pull Requests

	Code Style

Questions & Concerns

If you have any questions about using or developing for this project, reach out
to @jfjlaros or send an email.

Issues & Bugs

Submit an issue [https://github.com/jfjlaros/tssv/issues/new] or pull request [https://github.com/jfjlaros/tssv/compare] with a fix if you find any
bugs in the project. See below for instructions on
sending in pull requests, and be sure to reference the code style
guide first!

When submitting an issue or pull request, make sure you are as detailed as
possible and fill in all answers to questions asked in the templates. For
example, an issue that simply states “X/Y/Z is not working!” will be closed.

Feature Requests

Submit an issue [https://github.com/jfjlaros/tssv/issues/new] to request a new feature. Features fall into one of
two categories:

	Major: Major changes should be discussed with me via email. I am
always open to suggestions and will get back to you as soon as I can!

	Minor: A minor feature can simply be added via a pull request [https://github.com/jfjlaros/tssv/compare].

Submitting Pull Requests

Before you do anything, make sure you check the current list of pull
requests [https://github.com/jfjlaros/tssv/pulls] to ensure you are not duplicating anyone’s work. Then, do the
following:

	Fork the repository and make your changes in a git branch: git checkout -b my-branch base-branch

	Read and follow the code style guidelines.

	Make sure your feature or fix does not break the project! Test thoroughly.

	Commit your changes, and be sure to leave a detailed commit message.

	Push your branch to your forked repo on GitHub: git push origin my-branch

	Submit a pull request [https://github.com/jfjlaros/tssv/compare] and hold tight!

	If any changes are requested by the project maintainers, make them and
follow this process again until the changes are merged in.

Code Style

Please follow the coding style conventions detailed below:

	For Python: PEP 8 - Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].

 _static/minus.png

_static/plus.png

_images/speed.png
speedup

35

30

25

20

15

10

"speed.dat” —@—

800 900 1000

_static/up.png

_images/benchmark.png
un time

250

200

150

100

100

"old.dat’ —@—
"new.dat’ —ll—

G

200

300

400

500
dataset size

600

700

800 900

1000

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 TSSV: Targeted characterisation of short structural variation

 		
 Introduction

 		
 Installation

 		
 From source

 		
 Usage

 		
 Paired-end read support

 		
 Cheat sheet: Interpretation of letter case in TSSV input and output

 		
 Implementation notes

 		
 References

 		
 Benchmarking test for the C library

 		
 Speedup estimation

 		
 Plotting

 		
 Results

 		
 Raw run times

 		
 Speedup

 		
 Contributors

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

